Gabinete do Prefeito

SISTEMA DE ABASTECIMENTO DE ÁGUA DA CIDADE DE CHAVES/PA PRÉ-DIMENSIONAMENTO HIDRÁULICO

1	- MEMÓRIA	DECA	íiciiin	DO	CICTENAN
1	- IVIEIVIUNIA	DECF	ALCULU	ν	JIJ I EIVIA

1.1- CÁLCULO DAS VAZÕES

1.1.1 - CÁLCULO DO CONSUMO DIÁRIO

 $CD = q \times P$

CD= 910.837,46 l/dia

910,84 m³/dia 11 DE FUNCIONAMENTO

1.1.2 - CÁLCULO DA VAZÃO DE CAPTAÇÃO PARA

 $Q1 = \underbrace{K1 \times q \times p}_{TEC}$

Q1= 91.083,75 l/horas

91,08 m³/hora

1.1.3 - CÁLCULO DA VAZÃO DE DISTRIBUIÇÃO

 $Q4 = \frac{K1 \times K2 \times q \times p}{86400}$

Q4= **15,08** //

1.2 - DIMENSIONAMENTO DA ELEVATÓRIA DE ÁGUA BRUTA (EAB) - VAZÃO POR POÇO A PERFURAR= 91,08 m³/hora

1.2.1 -	BUIVIBA SUBIVIEKSA DU PUÇU	PI			
COTA DO NI	ÍVEL DO TERRENO NO POÇO		19,50	m	СТР
COTA DO N	ÍVEL DINÂMICO		-16,00	m	CND
COTA DE NI	VEL DA BOMBA		-24,50	m	CNB
COTA DE TE	RRENO NA ETA		20,00	m	CTE
COTA NA EN	NTRADA DO AERADOR		31,00	m	CEA
ALTURA DA	ENTRADA DO AERADOR		11,00	m	HTA

1.2.1.1- CÁLCULO DO DIÂMETRO DO EDUTOR (DE)

$$DE = K \times \sqrt{Q1}$$

DE= 0,112 m ADOTADO **200** mm

1.2.1.2 - VELOCIDADE NO EDUTOR (VE)

$$VE = \frac{Q1 \times 4}{DE^2 \times PI}$$

VE=

0,40 m/s

 ${\it COMPRIMENTO DO EDUTOR \ (L) =} \\ 1.2.1.3 - {\it CÁLCULO DA PERDA DE CARGA NO EDUTOR}$

44,00 m

(∆ H1)

$$\Delta H1 = 10,643 \text{ x}$$
 $Q1^{1,85} \text{ x DE}^{4,87} \text{ x L}$

 $\Delta H1 = 0,04 \text{ m.c.a}$

1.2.1.4 - CÁLCULO DA PERDA DE CARGA NO BARRILETE DE RECALQUE DIÂMETRO DO BARRILETE DE RECALQUE (DBR)

(∆ H2) 200 mm

COMPRIMENTO DO BARRILETE DE RECALQUE (CBR)

3,00 m

1.2.1.5 - VELOCIDADE NO BARRILETE DE RECALQUE (VBR)

VBR=

0,40 m/s

1.2.1.6 - COMPRIMENTO EQUIVALENTE NO BARRILETE DE RECALQUE DO POÇO (LE1)

DESCRIÇÃO DAS PEÇAS		DN	Nº DE PÇ	Nº DE DN	LE1
AMPLIAÇÃO GRADUAL		75x200	1	12	2,40
CURVA 90°		200	1	30	6,00
CURVA 45°		200	2	15	6,00
TÊ PASSAGEM DIRETA		200	2	20	8,00
REGISTRO DE GAVETA		200	1	8	1,60
VÁLVULA DE RETENÇÃO		200	1	100	20,00
COMPRIMENTO DA TUBULAÇÃO		200			3,00
	·		TOTAL		47.00

$$\Delta H2 = 10,643 \text{ x}$$
 Q1^{1,85} x LE

 $\Delta H2 = 0,05 \text{ m.c.} 0$

1.2.1.7 - CÁLCULO DA PERDA DE CARGA NA ADUTORA DE ÁGUA BRUTA (AAB)

(∆ H3) 200 mm

DIÂMETRO DA ADUTORA DE ÁGUA BRUTA (DAAB) COMPRIMENTO DA ADUTORA DE ÁGUA BRUTA (CAB)

80,00 m

1.2.1.8 - VELOCIDADE NA ADUTORA DE ÁGUA BRUTA (VAAB)

Gabinete do Prefeito

SISTEMA DE ABASTECIMENTO DE ÁGUA DA CIDADE DE CHAVES/PA PRÉ-DIMENSIONAMENTO HIDRÁULICO

VAAB=	Q1 x 4
	DAAB² x PI
VAAB=	0,40 m/s

1.2.1.9 - COMPRIMENTO EQUIVALENTE NA ADUTORA DE ÁGUA BRUTA (LE2)

DESCRIÇÃO DAS PEÇAS	DN	Nº DE PÇ	Nº DE DN	LE2
CURVA 90°	200	1	30	6,00
COMPRIMENTO DA TUBULAÇÃO	200			80,00
		TOTAL		86.00

$$\Delta H3 = 10,643 \ x$$
 Q1 1.85 \times LE2 $C^{1,85} \times DAAB^{4,87}$ $\Delta H3 = 0,08 \ m.c.a$

1.2.1.10 - CÁLCULO DA PERDA DE CARGA NA SUBIDA DO AERADOR

(∆ H4)

200 mm

VAZÃO NO TRECHO = 91,08 m3/h DIÂMETRO DA TUBULAÇÃO DE ÁGUA BRUTA (DAAB)

COMPRIMENTO DA TUBULAÇÃO DE ÁGUA BRUTA (CAB) 12,00 m

1.2.1.11 - VELOCIDADE NA ADUTORA DE ÁGUA BRUTA (VAAB)

$$VAAB=$$
 Qtotal x 4
 $DAAB^2 \times PI$
 $VAAB=$ 0,81 m/s

1.2.1.12 - COMPRIMENTO EQUIVALENTE NA TUBULAÇÃO DE ÁGUA BRUTA (LE3)

DESCRIÇÃO DAS PEÇAS	DN	Nº DE PÇ	Nº DE DN	LE3
TÊ SAÍDA LATERAL	200	1	50	10,00
SAÍDA DE CANALIZAÇÃO	200	1	35	7,00
CURVA 90°	200	2	30	12,00
COMPRIMENTO DA TUBULAÇÃO	200			12,00
		TOTAL		41.00

$$\Delta H4 = 10,643 \text{ x}$$
 Qtotal 1.85 \times LE3 $C^{1.85} \times DAAB^{4.87}$

 $\Delta H4 =$ **0,13** m.c.a

1.2.1.13 - CÁLCULO DA ALTURA MANOMÉTRICA TOTAL (HMT)

∆ H3 + $HMT = HG + \Delta H1 +$ ∆H2 + ∆ H4

HMT = **47,30** m.c.a

1.2.1.14 - DADOS PARA SELEÇÃO DA CONJUNTO ELEVATÓRIO

VAZÃO DE CAPTAÇÃO = 45,54 m³/horas ALTURA MANOMÉTRICA TOTAL = 47,30 m.c.a

1.2.1.15 - POTÊNCIA REQUERIDA

ONDE:

70% (Rendimento da bomba) η = 45,54 m³/horas Q1 = (Vazão de Projeto) HMT = 47,30 m.c.a (Atura manométrica total)

> P = 11,40 HP, adotar **P = 12CV**

1.2.2 - BOMBA SUBMERSA DO POÇO Р2

COTA DO NÍVEL DO TERRENO NO POÇO	19,50	m CTP
COTA DO NÍVEL DINÂMICO	-16,00	m CND
COTA DE NIVEL DA BOMBA	-24,50	m CNB
COTA DE TERRENO NA ETA	20,00	m CTE
COTA NA ENTRADA DO AERADOR	31,00	m CEA
ALTURA DA ENTRADA DO AERADOR	11,00	m HTA
1.2.2.1- CÁLCULO DO DIÂMETRO DO EDUTOR (DE)		

Gabinete do Prefeito

SISTEMA DE ABASTECIMENTO DE ÁGUA DA CIDADE DE CHAVES/PA PRÉ-DIMENSIONAMENTO HIDRÁULICO

 $DE = K \times \sqrt{Q1}$ $DE = 0.112 \ m \qquad ADOTADO \qquad \textbf{200} \ mm$ 1.2.2.2 - VELOCIDADE NO EDUTOR (VE)

$$VE = \frac{Q1 \times 4}{DE^2 \times PI}$$

$$VE = \frac{0,40 \text{ m/s}}{}$$

COMPRIMENTO DO EDUTOR (L) = 44,00 m 1.2.2.3 - CÁLCULO DA PERDA DE CARGA NO EDUTOR (Δ H1)

 $\Delta H1 = 10,643 \times \frac{Q1^{1,85}}{C^{1,85} \times DE^{4,87}} \times L$ $\Delta H1 = 0,04 \text{ m.c.a}$

ΔH1= **0,04** m.c.a 1.2.2.4 - CÁLCULO DA PERDA DE CARGA NO BARRILETE DE RECALQUE DIÂMETRO DO BARRILETE DE RECALQUE (DBR)

DIÂMETRO DO BARRILETE DE RECALQUE (DBR)
COMPRIMENTO DO BARRILETE DE RECALQUE (CBR)

1.2.2.5 - VELOCIDADE NO BARRILETE DE RECALQUE (VBR)

$$VBR = Q1 \times 4$$

$$DBR^2 \times PI$$

$$VBR = 0,40 \text{ m/s}$$

1.2.2.6 - COMPRIMENTO EQUIVALENTE NO BARRILETE DE RECALQUE DO POÇO (LE1)

DESCRIÇÃO DAS PEÇAS	DN	Nº DE PÇ	Nº DE DN	LE1
AMPLIAÇÃO GRADUAL	75x200	1	12	2,40
CURVA 90°	200	1	30	6,00
CURVA 45°	200	2	15	6,00
TÊ PASSAGEM DIRETA	200	2	20	8,00
REGISTRO DE GAVETA	200	1	8	1,60
VÁLVULA DE RETENÇÃO	200	1	100	20,00
COMPRIMENTO DA TUBULAÇÃO	200			3,00
	•	TOTAL		47,00

$$\Delta H2 = 10,643 \text{ x}$$
 Q1 ^{1,85} X LE1 $C^{1,85} \times DBR^{4,87}$

1 H2= **0,05** m.c.a

1.2.2.7 - CÁLCULO DA PERDA DE CARGA NA ADUTORA DE ÁGUA BRUTA (AAB)
DIÂMETRO DA ADUTORA DE ÁGUA BRUTA (DAAB)
COMPRIMENTO DA ADUTORA DE ÁGUA BRUTA (CAB)

(∆ H3) 200 mm 80,00 m

(∆ H4)

290

(∆ H2)

200 mm

3,00 m

1.2.2.8 - VELOCIDADE NA ADUTORA DE ÁGUA BRUTA (VAAB)

$$VAAB = Q1 \times 4$$
 $DAAB^2 \times PI$
 $VAAB = 0,40 \text{ m/s}$

1.2.2.9 - COMPRIMENTO EQUIVALENTE NA ADUTORA DE ÁGUA BRUTA (LE2)

DESCRIÇÃO DAS PEÇAS	DN	Nº DE PÇ	Nº DE DN	LE2
CURVA 90°	200	4	30	24,00
COMPRIMENTO DA TUBULAÇÃO	200			80,00
		TOTAL		104,00

$$\Delta H3 = 10,643 \text{ x}$$
 Q1^{1,85} $\times LE2$ $C^{1,85} \times DAAB^{4,87}$ $A H3 = 0,09 \text{ m.c.a}$

1.2.2.10 - CÁLCULO DA PERDA DE CARGA NA SUBIDA DO AERADOR

_/	ALCOLO DA PENDA DE CANGA NA SUBIDA DO AENADON							
	vazão (I/s)	diâmetro (mm)	velocidade (m/s)					
	ate 1,5	50	0,8					
	5	<i>75</i>	1,1					
	10	100	1,3					
	25	150	1,4					
	50	200	1,6					
	80	250	1,65					

Gabinete do Prefeito

SISTEMA DE ABASTECIMENTO DE ÁGUA DA CIDADE DE CHAVES/PA PRÉ-DIMENSIONAMENTO HIDRÁULICO

120	300	1,7
220	400	1,75
350	500	1,8

VAZÃO NO TRECHO =

91,08 m3/h

25,30 l/s

∆ H4

DIÂMETRO DA TUBULAÇÃO DE ÁGUA BRUTA (DAAB)

200 mm 12,00 m tabela

COMPRIMENTO TUBULAÇÃO DE ÁGUA BRUTA (CAB) 1.2.2.11 - VELOCIDADE NA ADUTORA DE ÁGUA BRUTA (VAAB)

VAAB= Qtotal x 4

DAAB² x PI

VAAB=

0,81 m/s

1.2.2.12 - COMPRIMENTO EQUIVALENTE NA TUBULAÇÃO DE ÁGUA BRUTA (LE3)

DESCRIÇÃO DAS PEÇAS	DN	Nº DE PÇ	Nº DE DN	LE3
TÊ SAÍDA LATERAL	200	1	50	10,00
SAÍDA DE CANALIZAÇÃO	200	1	35	7,00
CURVA 90°	200	2	30	12,00
COMPRIMENTO DA TUBULAÇÃO	200			12,00
		TOTAL		41,00

$$\Delta H4 = 10,643 \text{ x}$$
 Qtotal ^{1,85} x LE3 $C^{1,85}$ x DAAB ^{4,87}

 $\Delta H4 = 0,13 \text{ m.c.a}$

1.2.2.13 - CÁLCULO DA ALTURA MANOMÉTRICA TOTAL (HMT)

 $HMT = HG + \Delta H1 + \Delta H2 + \Delta H3 +$

HMT = 47,32 m.c.a

1.2.2.14 - DADOS PARA SELEÇÃO DA CONJUNTO ELEVATÓRIO

COMO A COMUNIDADE DISPÕE DE 2 POÇOS A VAZÃO DE CAPTAÇÃO SERIA A VAZÃO TOTAL DIVIDIDA POR 2

VAZÃO DE CAPTAÇÃO = Q1/2

VAZÃO DE CAPTAÇÃO =45,54 m³/horasALTURA MANOMÉTRICA TOTAL =47,32 m.c.a

1.2.2.15 - POTÊNCIA REQUERIDA

ONDE:

 $\eta = 70\%$ (Rendimento da bomba) Q1 = 45,54 m³/horas (Vazão de Projeto) HMT = 47,32 m.c.a (Atura manométrica total)

P = 11,40 HP,

bomba submersivel 710/022/22TR+S65-06 rendimento 68,72 %
Painel CCA02222TRS potência 22 CV

1.3 - DIMENSIONAMENTO DA ELEVATÓRIA DE ÁGUA TRATADA (EAT)

1.3.1 - DIÂMETRO DE RECALQUE VAZÃO DE PROJETO

COEFICIENTE DA FORMA DE BRESSE

91,08 m³/h 1,00

 $DR = Kx \bigvee Q1$

DR= 0,159

DIÂMETRO DE RECALQUE ADOTADO DR = 200 mm DIÂMETRO DE SUCÇÃO ADOTADO DS= 250 mm

1.3.2 - VELOCIDADE NO BARRILETE DE RECALQUE

Gabinete do Prefeito

SISTEMA DE ABASTECIMENTO DE ÁGUA DA CIDADE DE CHAVES/PA PRÉ-DIMENSIONAMENTO HIDRÁULICO

V=	Q1 x 4
_	DR² x PI
V=	0,81 m/s

Gabinete do Prefeito

SISTEMA DE ABASTECIMENTO DE ÁGUA DA CIDADE DE CHAVES/PA PRÉ-DIMENSIONAMENTO HIDRÁULICO

1.3.3 - VELOCIDADE NO BARRILETE DE SUCÇÃO

V= Q1 x 4 DS² x PI 0,52 m/s

1.3.4 - CÁLCULO DA PERDA DE CARGA NO BARRILETE DE SUCÇÃO

1.3.4.1 - COMPRIMENTO EQUIVALENTE (LE2)

1131111				
DESCRIÇÃO DAS PEÇAS	DN	Nº DE PÇ	Nº DE DN	Le1
REGISTRO DE GAVETA	250	1	8	2,00
AMPLIAÇÃO GRADUAL	200x250	1	12	3,00
CURVA 90°	250	1	30	7,50
AMPLIAÇÃO GRADUAL	200x250	1	12	3,00
TUBULAÇÃO	250			2,00
		TOTAL		17.50

 $\Delta HS = 10,643 x$ C 1,85 x DS 4,87

ΔHS = **0,022** m

1.3.5 - CÁLCULO DA ALTURA MANOMÉTRICA DE SUCÇÃO (Hms)

COTA DO NÍVEL DO TERRENO DO RESERV. APOIADO CTRA 20,00 m COTA NO EIXO DA BOMBA 18,45 m CEB COTA DO NÍVEL MÍNIMO NO RESERVATÓRIO APOIADO 18,60 m CNRAP COTA DO NÍVEL MÁXIMO NO RESERVATÓRIO APOIADO 21,25 m **CNMRAP** COTA DE ENTRADA NO RESERVATÓRIO ELEVADO 35,10 m CEREL

Hg= -0,15 (DESNÍVEL ENTRE O NÍVEL DA BOMBA E O NÍVEL MÍNIMO DO RESERVATÓRIO APOIADO)

 $\Delta HS + Hg$ Hms= **-0,13** m.c.a

1.3.6 - CÁLCULO DA PERDA DE CARGA NO LINHA DE RECALQUE

1.3.6.1 - COMPRIMENTO EQUIVALENTE

DESCRIÇÃO DAS PEÇAS	DN	Nº DE PÇ	Nº DE DN	Le2
AMPLIAÇÃO GRADUAL	150x200	1	12	1,80
CURVA 90°	200	9	30	54,00
REGISTRO DE GAVETA	200	2	8	3,20
TÊ DE SAIDA LATERAL	200	1	50	10,00
VÁLVULA DE RETENÇÃO	200	1	100	20,00
SAÍDA DE CANALIZAÇÃO	150	1	35	5,25
TUBULAÇÃO	200			305,00
		TOTAL		399,25

$$\Delta HR = 10,643 \text{ x}$$
 Q1^{1,85} $\times LE2$ $C^{1,85} \times DR^{4,87}$

 $\Lambda HR =$ **1,470** m

1.3.7 - CÁLCULO DA ALTURA MANOMÉTRICA DE RECALQUE (Hmr)

16,65 (DESNÍVEL ENTRE O NÍVEL DA BOMBA E O NÍVEL ENTRADA DO RESERVATÓRIO) Hg=

 $\Delta HR + Hg$ Hmr= Hmr= **18,12** m.c.a

1.3.8 - CÁLCULO DA ALTURA MANOMÉTRICA TOTAL (HmT)

Hmt = Hms + Hmr Hmt = **17,99** mca

1.3.9 - DADOS PARA SELEÇÃO DA CONJUNTO ELEVATÓRIO

VAZÃO DE CAPTAÇÃO = 91,08 m3/horas ALTURA MANOMÉTRICA TOTAL = 17,99 m.c.a

1.3.10 - POTÊNCIA REQUERIADA

 $P = Q1 \times HMT$

ONDE:

70% (Rendimento da bomba) 91,08 m³/horas Q1 = (Vazão de Projeto) (Atura manométrica total) HMT = 17.99 m.c.a P = 8,67HP, adotar P = 15 CV

bomba centrífuga ini/65-125 rendimento 78,3 % 15 CV potência

Gabinete do Prefeito

SISTEMA DE ABASTECIMENTO DE ÁGUA DA CIDADE DE CHAVES/PA PRÉ-DIMENSIONAMENTO HIDRÁULICO